Formulas.


Welcome!

If you've found your way here, you are obviously one of the brave souls who dare to tackle orbital mechanics the old fashioned way — with grit and determination. Kudos!

To help you along your journey, there are examples included with many of the formulas (and more forthcoming).

Enjoy! (And, of course, good luck!)


Basic Physics


Linear Momentum


\[\bar{p} = m \bar{V}\]


Where:

$\bar{p} = linear \ momentum \ vector \ (kg \cdot m/s)$

$m = mass \ (kg)$

$\bar{V} = velocity \ vector \ (m/s)$

How fast would a 5 kg bowling ball have to be rolling to have the same linear momentum as a 25,000 kg truck moving at 1 m/s?

Given:
$m_{ball} = 5 \ kg$

$m_{truck} = 25,000 \ kg$

$V_{truck} = 1 \ m/s$

Find:
$V_{ball} \ to \ equal \ the \ linear \ momentum \ of \ the \ truck$

Solution:
$p_{truck} = m_{truck} V_{truck}$

$p_{truck} = (25,000 \ kg)(1 \ m/s)$

$p_{truck} = 25,000 \ kg \cdot m/s$

$V_{ball} = \frac{p_{truck}}{m_{ball}}$

$V_{ball} = \frac{25,000 \ kg \cdot m/s}{5 \ kg}$

$V_{ball} = 5,000 \ m/s$

Answer:
$V_{ball} = 5,000 \ m/s$


Angular Momentum


\[\bar{H} = I \bar{\Omega}\]


Where:

$\bar{H} = angular \ momentum \ vector \ (kg \cdot m^{2}/s)$

$I = moment \ of \ inertia \ (kg \cdot m^{2})$

$\Omega = angular \ velocity \ vector \ (rad/s)$

A football thrown in a perfect spiral has a moment of inertia of 0.001 kg · m2. If the football is spinning at 60 rpm, what is its angular momentum?

Given:
$I = 0.001 \ kg \cdot m^{2}$

$\bar{ \Omega} = 60 \ rpm \Rightarrow (60) \left( \frac{2 \pi}{60} \ rad/s \right) = 6.283 \ rad/s$

Find:
$H$

Solution:
$\bar{H} = I \bar{ \Omega}$

$H = (0.001 \ kg \cdot m^{2})(6.283 \ rad/s)$

$H = 0.006283 \ kg \cdot m^{2}/s$

Answer:
$H = 0.006283 \ kg \cdot m^{2}/s$



Angular Momentum another way:

\[\bar{H} = \bar{R} \times m \bar{V}\]

** Note: this is a cross product **


Where:

$\bar{H} = angular \ momentum \ vector \ (kg \cdot m^{2}/s)$

$\bar{R} = position \ (or, \ moment \ arm) \ (m)$

$m = mass \ (kg)$

$\bar{V} = velocity \ vector \ (m/s)$

Imagine you are spinning a 0.30 kg mass (attached to the end of a 0.5 m string) over your head. If you let go of the string the mass will sail off on a tangent of 2 m/s. What was the angular momentum of the spinning mass before you let go?

Given:
$\ m = 0.30 \ kg$

$R = 0.5 \ m$

$V = 2 \ m/s$

Find:
$H$

Solution:
$ \bar{H} = \bar{R} \times \bar{m} \bar{V}$

$H = RmV$

$H = (0.5 \ m)(0.30 \ kg)(2 m/s)$

$H = 0.30 \ kg \cdot m/s$

Answer:
$H = 0.30 \ kg \cdot m/s$


Force (Applied)


\[\bar{F} = m \bar{a}\]


Where:

$\bar{F} = force \ vector \ (kg \cdot m/s^{2}, \ or, \ N \ (Newtons))$

$m = mass \ (kg)$

$\bar{a} = acceleration \ (m/s^{2})$

A hockey player is able to apply a 100 N force to 0.170097 kg hockey puck for a total of 0.1 seconds. Ignoring gravity, how fast will the hockey puck be going?

Given:
$m_{puck} = 0.170097 \ kg$

$F_{player} = 100 \ N$

$\Delta t = 0.1 \ s$

Find:
$\Delta V_{puck}$

Solution:
$F = ma \Rightarrow F = m \frac{\Delta V}{\Delta t}$

$\Delta V = \frac{F \Delta t}{m}$

$\Delta V = \frac{(100 \ N)(0.1 \ s)}{0.170097 \ kg}$

$\Delta V = 58.79 \ m/s$

Answer:
$\Delta V = 58.79 \ m/s$

Or, 131.5 mph — What a shot!! (A hard slapshot typically clocks in at about 100 mph)


Force (Due to Gravity)


\[F_{g} = \frac{Gm_{1}m_{2}}{R^{2}}\]


Where:

$F_{g} = force \ due \ to \ gravity \ (N)$

$G = universal \ gravitational \ constant \approx 6.67 \times 10^{-11} (N \cdot m^{2}/kg^{2})$

$m_{1}, \ m_{2} = masses \ of \ two \ bodies \ (m)$

$R = distance \ between \ the \ two \ bodies \ (m)$

In the void of interstellar space, two asteroids pass each other at a distance of 200 m. Asteroid 1 has a mass of 2 X 106 kg, while Asteroid 2 has a mass of 8 X 106 kg. What is the force of gravitational attraction between them?

Given:
$m_{Asteroid 1} = 2 \times 10^{6} \ kg$

$m_{Asteroid 2} = 8 \times 10^{6} \ kg$

$R = 200 \ m$

Find:
$F_{g}$

Solution:
$F_{g} = \frac{Gm_{Asteroid 1}m_{Asteroid 2}}{R^{2}}$

$F_{g} = \frac{(6.67 \times 10^{-11} \ N \cdot m^{2}/kg^{2})(2 \times 10^{6} \ kg)(8 \times 10^{6} \ kg)}{(200 \ m)^{2}}$

$F_{g} = 0.02668 \ N$

Answer:
$F_{g} = 0.02668 \ N$


Acceleration (Due to Gravity)


\[a_{g} = \frac{\mu_{earth}}{R^{2}}\]


Where:

$a_{g} = acceleration \ due \ to \ gravity \ (m/s^{2})$

$\mu_{earth} = Gm_{earth} \approx 3.986 \times 10^{14} \ (m^{3}/s^{2}) \ or \ 3.986 \times 10^{5} \ (km^{3}/s^{2})$

$R = distance \ to \ Earth's \ center \ (m \ or \ km)$


Total Mechanical Energy


\[E = KE + PE\]


Where:

$E = total \ mechanical \ energy \ (kg \cdot m^{2}/s^{2})$

$KE = kinetic \ energy \ (kg \cdot m^{2}/s^{2})$

$PE = potential \ energy \ (kg \cdot m^{2}/s^{2})$



Total Mechanical Energy another way:

\[E = \frac{1}{2}mV^{2} - \frac{m \mu}{R}\]


Where:

$E = total \ mechanical \ energy \ (kg \cdot km^{2}/s^{2})$

$m = mass \ (kg)$

$V = velocity \ (km/s)$

$\mu = gravitational \ parameter \approx 3.986 \times 10^{5} \ (km^{3}/s^{2})$

$R = position \ (km)$


Kinetic Energy


\[KE = \frac{1}{2}mV^{2}\]


Where:

$KE = kinetic \ energy \ (kg \cdot km^{2}/s^{2})$

$m = mass \ (kg)$

$V = velocity \ (km/s)$


Potential Energy


\[PE = - \frac{m \mu}{R}\]


Where:

$PE = potential \ energy \ (kg \cdot km^{2}/s^{2})$

$m = mass \ (kg)$

$\mu = gravitational \ parameter \approx 3.986 \times 10^{5} \ (km^{3}/s^{2})$

$R = distance \ from \ Earth's \ center \ (km)$


Two-Body Motion


Restricted Two-Body Equation of Motion


\[\ddot{\bar{R}} + \frac{\mu}{R^{2}} \frac{\bar{R}}{R} = 0\]

** Note: $\ddot{\bar{R}}$ is the engineering convention for the second derivative of $\bar{R}$ with respect to time, better known as acceleration, or, $\bar{a}$ **


Where:

$\ddot{\bar{R}} = spacecraft's \ acceleration \ (km/s^{2})$

$\mu = gravitational \ parameter = 3.986 \times 10^{5} (km^{3}/s^{2}) \ for \ Earth$

$\bar{R} = spacecraft's \ position \ vector \ (km)$

$R = magnitude \ of \ spacecraft's \ position \ vector \ (km)$


Orbital Geometry


Geometrical Parameters


$\bar{R} = spacecraft's \ position \ vector, \ measured \ from \ Earth's \ center$

$\bar{V} = spacecraft's \ velocity \ vector$

$F \ and \ F^{1} = primary \ and \ vacant \ foci \ of \ the \ ellipse$

$R_{p} = radius \ of \ periapsis$

$R_{a} = radius \ of \ apoapsis$

$2a = major \ axis$

$2b = minor \ axis$

$2c = distance \ between \ the \ foci$

$a = semimajor \ axis$

$b = semiminor \ axis$

$\nu = true \ anomaly$

$\phi = flight \ path \ angle$

$e = eccentricity$


Magnitude of Position Vector


\[R = \frac{a(1 - e^{2})}{1 + e \cos \nu}\]


Where:

$R = magnitude \ of \ the \ spacecraft's \ position \ vector \ (km)$

$a = semimajor \ axis \ (km)$

$e = eccentricity \ (unitless)$

$\nu = true \ anomaly \ (deg \ or \ rad)$


Orbital Motion


Specific Mechanical Energy


\[\varepsilon = \frac{V^{2}}{2} - \frac{\mu}{R}\]


Where:

$\varepsilon = spacecraft's \ specific \ mechanical \ energy \ (km^{2}/s^{2})$

$V = spacecraft's \ velocity \ (km/s)$

$\mu = gravitational \ parameter \approx 3.986 \times 10^{5} \ (km^{3}/s^{2}) \ on \ Earth$

$R = spacecraft's \ distance \ from \ Earth's \ center \ (km)$



Specific Mechanical Energy another way:

\[\varepsilon = - \frac{\mu}{2a}\]


$\varepsilon = spacecraft's \ specific \ mechanical \ energy \ (km^{2}/s^{2})$

$\mu = gravitational \ parameter = 3.986 \times 10^{5} \ (km^{3}/s^{2})$

$a = semimajor \ axis \ (km)$

What is the specific mechanical energy of an orbit with a semimajor axis of 46,320 km?

Given:
$a = 46,320 \ km$

Find:
$ \varepsilon$

Solution:
$ \varepsilon = - \frac{ \mu}{2a}$

$ \varepsilon = - \frac{3.986 \times 10^{5} \ km^{3}/s^{2}}{2(46,320 \ km)}$

$ \varepsilon = - 4.30 \ km^{2}/s^{2}$

Answer:
$ \varepsilon = - 4.30 \ km^{2}/s^{2}$


Orbital Period


\[P = 2 \pi \sqrt{\frac{a^{3}}{\mu}}\]


Where:

$P = orbital \ period \ (s)$

$\pi = 3.14159... \ (unitless)$

$a = semimajor \ axis \ (km)$

$\mu = gravitational \ parameter = 3.986 \times 10^{5} \ (km^{3}/s^{2})$


Specific Angular Momentum


\[\bar{h} = \bar{R} \times \bar{V}\]


Where:

$\bar{h} = spacecraft's \ specific \ angular \ momentum \ vector \ (km^{2}/s)$

$\bar{R} = spacecraft's \ position \ vector \ (km)$

$\bar{V} = spacecraft's \ velocity \ vector \ (km/s)$

A spacecraft sends the following information to a ground-based tracking station:
$ \bar{R} = 7220 \ \hat{I} + 5477 \ \hat{J} + 223 \ \hat{K} \ km$
$ \bar{V} = 0.34 \ \hat{I} - 0.75 \ \hat{J} - 8.00 \ \hat{K} \ km/s$
What is the specific angular momentum of the spacecraft?

Given:
$ \bar{R} = 7220 \ \hat{I} + 5477 \ \hat{J} + 223 \ \hat{K} \ km$

$ \bar{V} = 0.34 \ \hat{I} - 0.75 \ \hat{J} - 8.00 \ \hat{K} \ km/s$

Find:
$ \bar{h}$

Solution:
$ \bar{h} = \bar{R} \times \bar{V}$

$ \bar{h} = [(5477)(-8.00) - (-0.75)(223)] \ \hat{I} - [(7220)(-8.00) - (0.34)(223)] \ \hat{J} +$

$[(7220)(-0.75) - (0.34)(5477)] \ \hat{K} \ km^{2}/s$

$ \bar{h} = [(-43816) - (-167.25)] \ \hat{I} - [(-57760) - (75.82)] \ \hat{J} +$

$[(-5415) - (1882.18)] \ \hat{K} \ km^{2}/s$

$ \bar{h} = - 43,648.75 \ \hat{I} + 57,835.82 \ \hat{J} - 7,277.18 \ \hat{K} \ km^{2}/s$

Answer:
$ \bar{h} = - 43,648.75 \ \hat{I} + 57,835.82 \ \hat{J} - 7,277.18 \ \hat{K} \ km^{2}/s$


Orbital Elements

This example illustrates the use of most (if not all) formulas listed in this section. It's very beneficial to see how they all fit together.

A new Earth observation satellite is known to have the following position and velocity vectors:
$\bar{R} = 8228 \hat{I} + 389.0 \hat{J} + 6888 \hat{K} \ km$
$\bar{V} = -0.7000 \hat{I} + 6.600 \hat{J} -0.6000 \hat{K} \ km/s$

What are this satellite's COE's (a, e, i, Ω, ω, and ν)?

Given:
$\bar{R} = 8228 \hat{I} + 389.0 \hat{J} + 6888 \hat{K} \ km$

$\bar{V} = -0.7000 \hat{I} + 6.600 \hat{J} -0.6000 \hat{K} \ km/s$

Find:
$a \ (semimajor \ axis)$

$e \ (eccentricity)$

$i \ (inclination)$

$\Omega \ (right \ ascension \ of \ the \ ascending \ node)$

$\omega \ (argument \ of \ perigee)$

$\nu \ (true \ anomaly)$

Solution:

Step 1: Determine magnitudes of $\bar{R}$ and $\bar{V}$

$R = \sqrt{(8228)^{2} + (389.0)^{2} + (6888)^{2}} = 10,738 \ km$

$V = \sqrt{(0.7000)^{2} + (6.600)^{2} + (0.6000)^{2}} = 6.664 \ km/s$

Step 2: Solve for the semimajor axis, $a$

$\varepsilon = \frac{V^{2}}{2} - \frac{\mu}{R}$

$\varepsilon = \frac{(6.664 \ km/s)^{2}}{2} - \frac{3.986 \times 10^{5} \ km^{3}/s^{2}}{10,738 \ km} = -14.916 \ km^{2}/s^{2}$

$\varepsilon = - \frac{\mu}{2a} \Rightarrow a = - \frac{\mu}{2 \varepsilon}$

$a = \frac{3.986 \times 10^{5} \ km^{3}/s^{2}}{2(-14.916 \ km^{2}/s^{2}} = 13360 \ km \rightarrow 1.336 \times 10^{4} \ km$

First Answer:
$a = 1.336 \times 10^{4} \ km$


Step 3: Solve for eccentricity vector, $\bar{e}$, and its magnitude, $e$

$\bar{e} = \frac{1}{\mu} \left[ \left(V^{2} - \frac{\mu}{R} \right) \bar{R} - \left( \bar{R} \cdot \bar{V} \right) \bar{V} \right]$

$\bar{R} \cdot \bar{V} = (8228)(-0.7000) + (389.0)(6.600) + (6888)(-0.600) = -7325 \ km^{2}/s$

$\bar{e} = \frac{1}{3.986 \times 10^{5} \ km^{3}/s^{2}} \left[ \left( \left( 6.664 \ m/s \right)^{2} - \frac{3.986 \times 10^{5} \ km^{3}/s^{2}}{10,738 \ km} \right) \bar{R} - \left(-7325 \ km^{2}/s \right) \bar{V} \right]$

$\bar{e} = (2.5088 \times 10^{-6})[(7.288) \bar{R} - (-7325) \bar{V}]$

$\bar{e} = (1.8248 \times 10^{-5})[8228 \hat{I} + 389.0 \hat{J} + 6888 \hat{K}] - (-0.018377)[-0.7000 \hat{I} + 6.600 \hat{J} - 0.6000 \hat{K}]$

$\bar{e} = [0.15044 \hat{I} + 0.0071125 \hat{J} + 0.12594 \hat{K}] - [0.012864 \hat{I} - 0.12129 \hat{J} + 0.011026 \hat{K}]$

$\bar{e} = 0.1376 \hat{I} + 0.1284 \hat{J} + 0.1149 \hat{K}$

$e = \sqrt{(0.1376)^{2} + (0.1284)^{2} + (0.1149)^{2}} = 0.2205$

Second Answer:
$e = 0.2205$


Step 4: Solve for specific angular momentum vector, $\bar{h}$, and its magnitude, h

$\bar{h} = \bar{R} \times \bar{V}$

$\bar{h} = [(389.0)(-0.600) - (6.600)(6888)] \hat{I} - [(8228)(-0.6000) - (-0.7000)(6888)] \hat{J} + [(8228)(6.600) - (0.700)(389.0)] \hat{K} \ km^{2}/s$

$\bar{h} = [(-233.4)-(45,460.8)] \hat{I} - [(-4936.8) + (4821.6)] \hat{J} + [(54,304.8) + (272.3)] \hat{K} \ km^{2}/s$

$\bar{h} = -45,694.2 \hat{I} + 115.2 \hat{J} + 54,577.1 \hat{K} \ km^{2}/s$

$h = \sqrt{(45,694.2)^{2} + (115.2)^{2} + (54,577.1)^{2}} = 71,180.3 \ km^{2}/s$

Step 5: Solve for the inclination angle, $i$

$i = \cos^{-1} \left(\frac{\hat{K} \cdot \bar{h}}{Kh}\right) \Rightarrow \cos^{-1} \left( \frac{\hat{K} \cdot \bar{h}}{h}\right)$

$\hat{K} \cdot \bar{h} = h_{K} = 54,577.1$

$i = \cos^{-1} \left( \frac{54,577.1}{71,180.3} \right) = \cos^{-1}(0.76674)$

$i = 39.94^{\circ} \ or \ (360^{\circ} - 39.94^{\circ}) = 320.1^{\circ}$

Resolving this ambiguity requires following the definition of inclination. Because $0^{\circ} < i < 360^{\circ}$:
$i = 39.94^{\circ}$

Third Answer:
$i = 39.94^{\circ}$


Step 6: Solve for the ascending node vector, $\bar{n}$, and its magnitude, $n$

$\bar{n} = \hat{K} \times \bar{h}$

$\bar{n} = -115.2 \hat{I} -45,694.2 \hat{J} + 0 \hat{K}$

$n = \sqrt{(115.2)^{2} + (45,694.2)^{2} + (0)^{2}} = 45,694.3 \ km^{2}/s$

Step 7: Solve for right ascension of the ascending node, $\Omega$. Do a quadrant check.

$\Omega = \cos^{-1} \left( \frac{\hat{I} \cdot \bar{n}}{In} \right) \Rightarrow \cos^{-1} \left( \frac{\hat{I} \cdot \bar{n}}{n} \right)$

$\hat{I} \cdot \bar{n} = n_{I} = -115.2$

$\Omega = \cos^{-1} \left( \frac{-115.2}{45,694.3} \right) = \cos^{-1}(-0.0025211)$

$\Omega = 90.14^{\circ} \ or \ (360^{\circ} - 90.14^{\circ}) = 269.9^{\circ}$

$If \ n_{J} \geq 0, \ then \ 0^{\circ} \leq \Omega \leq 180^{\circ}$

$If \ n_{J} < 0, \ then \ 180^{\circ} < \Omega < 360^{\circ}$

$n_{J} = -45,694.2, \ n_{J} < 0$

$\Omega = 269.9^{\circ}$

Fourth Answer:
$\Omega = 269.9^{\circ}$


Step 8: Solve for the argument of perigee, $\omega$. Do a quadrant check.

$\omega = \cos^{-1} \left( \frac{\bar{n} \cdot \bar{e}}{ne} \right)$

$\bar{n} \cdot \bar{e} = (-115.2)(0.1376) + (-45,694.2)(0.1284) + (0)(0.1149) = -5882.99$

$\omega = \cos^{-1} \left[ \frac{-5882.99}{(45694.3)(0.2205)} \right] = \cos^{-1}(-0.58389)$

$\omega = 125.7^{\circ} \ or \ (360^{\circ} - 125.7^{\circ}) = 234.3^{\circ}$

$If \ e_{K} \geq 0, \ then \ 0^{\circ} \leq \omega \leq 180^{\circ}$

$If \ e_{K} < 0, \ then \ 180^{\circ} < \omega < 360^{\circ}$

$e_{K} = 0.1149, \ e_{K} > 0$

$\omega = 125.7^{\circ}$

Fifth Answer:
$\omega = 125.7^{\circ}$


Step 9: Solve for true anomaly, $\nu$. Do a quadrant check.

$\nu = \cos^{-1} \left( \frac{\bar{e} \cdot \bar{R}}{eR} \right)$

$\bar{e} \cdot \bar{R} = (0.1376)(8228) + (0.1284)(389.0) + (0.1149)(6888) = 1974.05$

$\nu = \cos^{-1} \left[ \frac{1974.05}{(0.2205)(10,738)} \right] = \cos^{-1}(0.83373)$

$\nu = 33.52^{\circ} \ or \ (360^{\circ} - 33.52^{\circ}) = 326.48^{\circ}$

$If \ (\bar{R} \cdot \bar{V}) \geq 0, \ then \ 0^{\circ} \leq \nu \ leq 180^{\circ}$

$If \ (\bar{R} \cdot \bar{V} < 0, \ then \ 180^{\circ} < \nu < 360^{\circ}$

$(\bar{R} \cdot \bar{V}) = -7325, \ (\bar{R} \cdot \bar{V}) < 0$

$\nu = 326.5^{\circ}$

Sixth Answer:
$\nu = 326.5^{\circ}$


Whew!!!

Please note: This example is based on an example found in this (fantabulous!!—that's a word, right??) book:
Sellers, Jerry Jon, et al. Understanding Space: An Introduction to Astronautics. New York: McGraw-Hill, 1994.


Semimajor Axis


\[a = - \frac{\mu}{2 \varepsilon}\]


Where:

$a = semimajor \ axis \ (km)$

$\mu = gravitational \ parameter = 3.986 \times 10^{5} \ (km^{3}/s^{2})$

$\varepsilon = spacecraft's \ specific \ mechanical \ energy \ (km^{2}/s^{2})$


Eccentricity


\[\bar{e} = \frac{1}{ \mu } \Big[\Big(V^{2} - \frac{\mu}{R}\Big)\bar{R} - \Big(\bar{R} \cdot \bar{V}\Big)\bar{V}\Big]\]


Where:

$\bar{e} = eccentricity \ vector \ (unitless)$

$\mu = gravitational \ parameter = 3.986 \times 10^{5} \ (km^{3}/s^{2})$

$V = magnitude \ of \ \bar{V} \ (km/s)$

$R = magnitude \ of \ \bar{R} \ (km)$

$\bar{R} = position \ vector \ (km)$

$\bar{V} = velocity \ vector \ (km/s)$


Inclination


\[i = \cos^{-1} \Big(\frac{\hat{K} \cdot \bar{h}}{Kh}\Big)\]


Where:

$i = inclination \ (deg \ or \ rad)$

$\hat{K} = unit \ vector \ through \ the \ North \ Pole$

$\bar{h} = specific \ angular \ momentum \ vector \ (km^{2}/s)$

$K = magnitude \ of \ \hat{K} = 1$

$h = magnitude \ of \ \bar{h} \ (km^{2}/s)$


Ascending Node Vector


\[\bar{n} = \hat{K} \times \bar{h}\]


Where:

$\bar{n} = ascending \ node \ vector \ (km^{2}/s)$

$\hat{K} = unit \ vector \ through \ the \ North \ Pole$

$\bar{h} = specific \ angular \ momentum \ vector \ (km^{2}/s)$


Right Ascension of the Ascending Node


\[\Omega = \cos^{-1} \Big(\frac{\hat{I} \cdot \bar{n}}{In}\Big)\]


Where:

$\Omega = right \ ascension \ of \ the \ ascending \ node \ (deg \ or \ rad)$

$\hat{I} = unit \ vector \ in \ the \ principal \ direction$

$\bar{n} = ascending \ node \ vector \ (km^{2}/s)$

$I = magnitude \ of \ \hat{I} = 1$

$n = magnitude \ of \ \bar{n} \ (km^{2}/s)$


$If \ n_{j} \geq 0, \ then \ 0 \leq \Omega \leq 180^{\circ}$

$If \ n_{j} < 0, \then \ 180^{\circ} < \Omega < 360^{\circ}$


Argument of Perigee


\[\omega = \cos^{-1} \Big(\frac{\bar{n} \cdot \bar{e}}{ne} \Big)\]


Where:

$\omega = argument \ of \ perigee \ (deg \ or \ rad)$

$\bar{n} = ascending \ node \ vector \ (km^{2}/s)$

$\bar{e} = eccentricity \ vector \ (unitless)$

$n = magnitude \ of \ \bar{n} \ (km^{2}/s)$

$e = magnitude \ of \ \bar{e} \ (unitless)$


$If \ e_{k} \geq 0, \ then \ 0^{\circ} \leq \omega \leq 180^{\circ}$

$If \ e_{k} < 0, \ then \ 180^{\circ} < \omega < 360^{\circ}$


True Anomaly


\[\nu = \cos^{-1} \Big(\frac{\bar{e} \cdot \bar{R}}{eR} \Big)\]


Where:

$\nu = true \ anomaly \ (deg \ or \ rad)$

$\bar{e} = eccentricity \ vector \ (unitless)$

$\bar{R} = position \ vector \ (km)$

$e = magnitude \ of \ \bar{e} \ (unitless)$

$R = magnitude \ of \ \bar{R} \ (km)$


$If \ \left(\bar{R} \cdot \bar{V} \right) \geq 0 \ \left(\phi \geq 0 \right), \ then \ 0^{\circ} \leq \nu \leq 180^{\circ}$

$If \ \left(\bar{R} \cdot \bar{V} \right) < 0 \ \left(\phi < 0 \right), \ then \ 180^{\circ} < \nu < 360^{\circ}$


Ground Tracks


Nodal Displacement


\[\Delta N = 360^{\circ} - longitude \ between \ successive \ ascending \ nodes\]


Where:

$\Delta N = nodal \ displacement \ (deg)$


Period (hours)


\[P = \frac{\Delta N}{15^{\circ} /hr} \ (for \ direct \ orbits)\]


Where:

$P = period \ (hours)$

$\Delta N = nodal \ displacement \ (deg)$


Semimajor Axis


\[a = \sqrt[3]{\mu (P/2\pi)^{2}}\]


Where:

$a = semimajor \ axis \ (km)$

$\mu = gravitational \ parameter \approx 3.986 \times 10^{5} \ (km^{3}/s^{2})$

$P = period \ (seconds)$

$\pi = 3.14159... \ (unitless)$


Inclination (Direct Orbit)


For a direct (prograde) orbit, $(0 < i < 90^{\circ})$, the latitude of the northernmost or southernmost point on the ground track (referred to as the "maximum latitude") is equal to the orbit's inclination.


Inclination (Indirect Orbit)


For an indirect (retrograde) orbit, $(90^{\circ} < i < 180^{\circ})$, subtract the maximum latitude from $180^{\circ}$ to get the inclination.


Hohmann Transfers


Tangential Burns


\[ \Delta V = |V_{selected} - V_{present}|\]


Where:

$\Delta V = velocity \ change \ to \ go \ from \ one \ orbit \ to \ another \ (km/s)$

$V_{selected} = velocity \ in \ desired \ orbit \ at \ present \ orbit \ radius \ (km/s)$

$V_{present} = velocity \ in \ present \ orbit \ (km/s)$


Major Axis of Transfer Orbit


\[2a_{transfer} = R_{orbit1} + R_{orbit2}\]


Where:

$2a_{transfer} = major \ axis \ of \ transfer \ orbit \ (km)$

$R_{orbit1} = radius \ of \ first \ orbit \ (km)$

$R_{orbit2} = radius \ of \ second \ orbit \ (km)$


Specific Mechanical Energy of Transfer Orbit


\[\varepsilon_{transfer} = - \frac{\mu}{2a_{transfer}}\]


Where:

$\varepsilon_{transfer} = specific \ mechanical \ energy \ of \ tranfer \ orbit \ (km^{2}/s^{2})$

$\mu = gravitational \ parameter \approx 3.986 \times 10^{5} \ (km^{3}/s^{s}) \ for \ Earth$

$2a_{transfer} = major \ axis \ of \ transfer \ orbit$


Time of Flight (TOF) of Transfer Orbit


\[TOF = \frac{P}{2} = \pi \sqrt{\frac{a_{transfer}^{3}}{\mu}}\]


Where:

$TOF = spacecraft's \ time \ of \ flight \ (s)$

$P = orbital \ period \ (s)$

$\pi = 3.14159... \ (unitless)$

$a = semimajor \ axis \ of \ transfer \ orbit \ (km)$

$\mu = gravitational \ parameter \ (km^{3}/s^{2})$


Simple Plane Change


\[\Delta V_{simple} = 2V_{initial} \sin \Big(\frac{\theta}{2}\Big)\]


Where:

$\Delta V_{simple} = change \ in \ velocity \ for a \ simple \ plane \ change \ (km/s)$

$V_{initial} = V_{final} = velocities \ in \ the \ initial \ and \ final \ orbits \ (km/s)$

$\theta = plane-change \ angle \ (deg \ or \ rad)$


Combined Plane Change


\[\Delta V_{combined} = \sqrt{(|\overline{V_{initial}}|)^{2} + (|\overline{V_{final}}|)^{2} - 2|\overline{V_{initial}}||\overline{V_{final}}| \cos \theta}\]


Where:

$\Delta V_{combined} = change \ in \ velocity \ for \ combined \ plane \ change \ (km/s)$

$|\overline{V_{initial}}| = magnitude \ of \ velocity \ in \ initial \ orbit \ (km/s)$

$|\overline{V_{final}}| = magnitude \ of \ velocity \ in \ final \ orbit \ (km/s)$

$\theta = plane-change \ angle \ (deg \ or \ rad)$


Rendezvous


Angular Momentum


\[\omega = \sqrt{\frac{\mu}{a^{3}}}\]


Where:

$\omega = spacecraft's \ angular \ momentum \ (rad/s)$

$\mu = gravitational \ parameter \approx 3.986 \times 10^{5} \ for \ Earth \ (km^{3}/s^{2})$

$a = semimajor \ axis \ (km)$


Lead Angle


\[\alpha_{lead} = \omega_{target}TOF\]


Where:

$\alpha_{lead} = angle \ by \ which \ the \ interceptor \ must \ lead \ the \ target \ (rad)$

$\omega_{target} = target \ spacecraft's \ angular \ velocity \ (rad/s)$

$TOF = time \ of \ flight \ (s)$


Phase Angle


\[\phi_{final} = \pi - \alpha_{lead}\]


Where:

$\phi_{final} = phase \ angle \ between \ interceptor \ and \ target \ as \ transfer \ begins \ (rad)$

$\pi = 3.14159... \ (unitless)$

$\alpha_{lead} = angle \ by \ which \ the \ interceptor \ must \ lead \ the \ target \ (rad)$


Wait Time


\[wait \ time = \frac{\phi_{final} - \phi_{initial}}{\omega_{target} - \omega_{interceptor}}\]


Where:

$wait \ time = time \ until \ interceptor \ initiates \ rendezvous \ (s)$

$\phi_{final}, \ \phi_{initial} = final \ and \ initial \ phase \ angles \ (rad)$

$\omega_{target}, \ \omega_{interceptor} = angular \ velocities \ of \ target \ and \ interceptor \ (rad/s)$


Semimajor Axis of Phasing Orbit


\[a_{phasing} = \sqrt[3]{ \mu \Big(\frac{\phi_{travel}}{2 \pi \omega_{target}}\Big)^{2}} \]


Where:

$a_{phasing} = semimajor \ axis \ of \ the \ phasing \ orbit \ (km)$

$\mu = gravitational \ parameter \approx 3.986 \times 10^{5} \ (km^{3}/s^{2}) \ for \ Earth$

$\phi_{travel} = angular \ distance \ traveled \ by \ target \ to \ reach \ rendezvous \ (rad)$

$\pi = 3.14159... \ (unitless)$

$\omega_{target} = target's \ angular \ velocity \ (rad/s)$


Interplanetary Travel


Radius of Sphere of Influence (SOI)


\[R_{SOI} = a_{planet} \Big( \frac{m_{planet}}{m_{Sun}} \Big)^{2/5}\]


Where:

$R_{SOI} = radius \ of \ planet's \ sphere \ of \ influence \ (km)$

$a_{planet} = semimajor \ axis \ of \ the \ planet's \ orbit \ around \ the \ Sun \ (km)$

$m_{planet} = mass \ of \ planet \ (kg)$

$m_{Sun} = mass \ of \ the \ Sun = 1.989 \times 10^{30} \ (kg)$


Velocity around the Sun


\[V_{Earth} = \sqrt{2 \Big( \frac{\mu_{Sun}}{R_{to Earth}} + \varepsilon_{Earth} \Big)} \]


Where:

$V_{Earth} = Earth's \ orbital \ velocity \ with \ respect \ to \ the \ Sun \ (km/s)$

$\mu_{Sun} = gravitational \ parameter \ of \ the \ Sun \approx 1.327 \times 10^{11} \ (km^{3}/s^{2})$

$R_{to Earth} = distance \ from \ Sun \ to \ Earth \approx 1.496 \times 10^{8} \ (km)$

$\varepsilon_{Earth} = specific \ mechanical \ energy \ of \ Earth's \ orbit \ (km^{2}/s^{2})$


Specific Mechanical Energy in Transfer Orbit


\[\varepsilon_{transfer} = - \frac{\mu_{Sun}}{2a_{transfer}}\]


Where:

$\varepsilon_{transfer} = spacecraft's \ specific \ mechanical \ energy \ in \ heliocentric \ transfer \ orbit \ (km^{2}/s^{2})$

$\mu_{Sun} = gravitational \ parameter \ of \ the \ Sun \approx 1.327 \times 10^{11} \ (km^{3}/s^{2})$

$a_{transfer} = semimajor \ axis \ of \ the \ transfer \ orbit \ (km)$


Semimajor Axis of Transfer Orbit


\[a_{transfer} = \frac{R_{to Earth} + R_{to Target}}{2}\]


Where:

$a_{transfer} = semimajor \ axis \ of \ the \ transfer \ orbit \ (km)$

$R_{to Earth} = radius \ from \ the \ Sun \ to Earth \approx 1.496 \times 10^{8} \ (km)$

$R_{to Target} = radius \ from \ the \ Sun \ to \ the \ target \ planet \ (km)$


Velocity Needed for Transfer


\[V_{transfer at Earth} = \sqrt{2 \Big( \frac{\mu_{Sun}}{R_{toEarth}} + \varepsilon_{transfer}\Big)}\]


Where:

$V_{transfer at Earth} = velocity \ spacecraft \ needs \ at \ Earth's \ radius \ from \ Sun \ to \ transfer \ to \ target \ (km/s)$

$\mu_{Sun} = gravitational \ parameter \ of \ the \ Sun \approx 1.327 \times 10^{11} \ (km^{3}/s^{2})$

$R_{to Earth} = radius \ from \ the \ Sun \ to Earth \approx 1.496 \times 10^{8} \ (km)$

$\varepsilon_{transfer} = spacecraft's \ specific \ mechanical \ energy \ in \ heliocentric \ transfer \ orbit \ (km^{2}/s^{2})$


Velocity at Infinity


\[V_{ \infty Earth} = |V_{transfer at Earth} - V_{Earth}|\]


Where:

$V_{ \infty Earth} = spacecraft's \ velocity \ at \ infinity \ with \ respect \ to \ Earth \ (km/s)$

$V_{transfer at Earth} = velocity \ spacecraft \ needs \ at \ Earth's \ radius \ from \ Sun \ to \ transfer \ to \ target \ (km/s)$

$V_{Earth} = Earth's \ orbital \ velocity \ with \ respect \ to \ the \ Sun \ (km/s)$


Velocity on Transfer Orbit


\[V_{transfer at target} = \sqrt{2 \Big( \frac{\mu_{Sun}}{R_{to target}} + \varepsilon_{transfer} \Big)}\]


Where

$V_{transfer at target} = spacecraft's \ velocity \ on \ the \ transfer \ orbit \ just \ outside \ the \target's \ SOI \ (km/s)$

$\mu_{Sun} \approx 1.327 \times 10^{11} \ (km^{3}/s^{2})$

$R_{to target} = distance \ from \ the \ Sun \ to \ the \ target \ planet \ (km)$

$\varepsilon_{transfer} = specific \ mechanical \ energy \ of \ the \ transfer \ orbit \ (km^{2}/s^{2})$


Specific Mechanical Energy of Target Planet


\[\varepsilon_{target} = - \frac{\mu_{Sun}}{2a_{target}}\]


Where:

$\varepsilon_{target} = target \ planet's \ specific \ mechanical \ energy \ with \ respect \ to \ the \ Sun \ (km^{2}/s^{2})$

$\mu_{Sun} \approx 1.327 \times 10^{11} \ (km^{3}/s^{2})$

$a_{target} = target \ planet's \ semimajor \ axis \ (km)$


Target Planet's Velocity around The Sun


\[V_{target} = \sqrt{2 \Big( \frac{\mu_{Sun}}{R_{to target}} + \varepsilon_{target} \Big)}\]


Where:

$V_{target} = target \ planet's \ velocity \ around \ the \ Sun \ (km/s)$

$\mu_{Sun} \approx 1.327 \times 10^{11} \ (km^{3}/s^{2})$

$R_{totarget} = distance \ from \ the \ Sun \ to \ the \ target \ planet \ (km)$

$\varepsilon_{target} = target \ planet's \ specific \ mechanical \ energy \ (km^{3}/s^{2})$


Velocity at Infinity


\[V_{ \infty target} = |V_{transfer at target} - V_{target}|\]


Where:

$V_{ \infty target} = spacecraft's \ velocity \ at \ infinity \ with \ respect \ to \ target \ (km/s)$

$V_{transfer at target} = velocity \ spacecraft \ has \ just \ outside \ target \ planet's \ SOI \ (km/s)$

$V_{target} = target's \ orbital \ velocity \ with \ respect \ to \ the \ Sun \ (km/s)$


Predicting Orbits


Mean Motion


\[n = \frac{angle}{time} = \frac{2 \pi}{P} = \sqrt{\frac{\mu}{a^{3}}}\]


Where:

$n = spacecraft's \ mean \ motion \ (rad/s)$

$\pi = 3.14159... \ (unitless)$

$P = orbital \ period \ (s)$

$\mu = central \ body's \ gravitational \ parameter \approx 3.986 \times 10^{5} \ (km^{3}/s^{2}) \ for \ Earth$

$a = semimajor \ axis \ (km)$


Time of Flight (TOF)


\[TOF = \frac{u_{future} - u_{initial}}{n}\]


Where:

$TOF = time \ of \ flight$

$u_{future} = spacecraft's \ future \ argument \ of \ latitude \ (rad)$

$u_{initial} \ spacecraft's \ initial \ argument \ of \ latitude \ (rad)$

$n = spacecraft's \ mean \ motion \ (rad/s)$


Mean Anomaly


\[M = nT\]


Where:

$M = mean \ anomaly \ (rad)$

$n = mean \ motion \ (rad/s)$

$T = time \ since \ last \ perigee \ passage \ (s)$


Change in Mean Motion Between Two Points in an Orbit


\[M_{future} - M_{initial} = n \left( t_{future} - t_{initial} \right) - 2k \pi \]


Where:

$M_{future} = mean \ anomaly \ when \ spacecraft \ is \ in \ the \ future \ position \ (rad)$

$M_{initial} = mean \ anomaly \ of \ spacecraft's \ initial \ position \ (rad)$

$t_{future} - t_{initial} = TOF \ between \ two \ points \ in \ the \ orbit \ (s)$

$k = the \ number \ of \ times \ the \ spacecraft \ passes \ perigee \ during \ the \ TOF$

$\pi = 3.14159... \ (unitless)$


Eccentric Anomaly


\[M = E - e \sin E\]


Where:

$M = mean \ anomaly \ (rad)$

$E = eccentric \ anomaly \ (rad)$

$e = eccentricity \ (unitless)$



Eccentric Anomaly Another Way:

\[\cos E = \frac{e + \cos \nu}{1 + e \cos \nu}\]


Where:

$E = eccentric \ anomaly \ (rad)$

$e = eccentricy \ (unitless)$

$\nu = true \ anomaly \ (rad)$



Eccentric Anomaly One More Way:

\[\cos \nu = \frac{\cos E - e}{1 - e \cos E}\]


Where:

$\nu = true \ anomaly \ (rad)$

$E = eccentric \ anomaly \ (rad)$

$e = eccentricy \ (unitless)$


Launch


Launch Site Latitude


The desired orbital inclination must be equal to, or greater than, the launch site's latitude, $L_{0}$.

A launch window can only exist for the following conditions:


\[L_{0} \leq i \ (direct \ (prograde) \ orbits)\]

\[L_{0} \leq 180^{\circ} - i \ (indirect \ (retrograde) \ orbits)\]


Launch-Direction Auxiliary Angle


\[ \sin \gamma = \frac{ \cos \alpha}{ \cos L_{0}}\]


Where:

$\gamma = launch-direction \ auxiliary \ angle \ (deg \ or \ rad)$

$\alpha = inclination \ auxiliary \ angle \ (deg \ or \ rad)$

$L_{0} = launch \ site \ latitude \ (deg \ or \ rad)$


Launch-Window Location Angle


\[ \cos \delta = \frac{ \cos \gamma}{ \sin \alpha}\]


Where:

$\delta = launch-window \ location \ angle \ (deg \ or \ rad)$

$\gamma = launch-direction \ auxiliary \ angle \ (deg \ or \ rad)$

$\alpha = inclination \ auxiliary \ angle \ (deg \ or \ rad)$


Launch-Window Near Ascending Node


\[LWST_{AN} = \Omega + \delta \]


Where:

$LWST_{AN} = launch-window \ sidereal \ time \ at \ ascending \ node$

$\Omega = right \ ascension \ of \ the \ ascending \ node \ (deg \ or \ rad)$

$\delta = launch-window \ location \ angle \ (deg \ or \ rad)$


Launch-Window Near Descending Node


\[LWST_{DN} = \Omega + \left( 180^{\circ} - \delta \right) \]


Where:

$LWST_{DN} = launch-window \ sidereal \ time \ at \ descending \ node$

$\Omega = right \ ascension \ of \ the \ ascending \ node \ (deg \ or \ rad)$

$\delta = launch-window \ location \ angle \ (deg \ or \ rad)$


Re-Entry


Dynamic Pressure


\[\bar{q} = \frac{\rho V^{2}}{2}\]


Where:

$\bar{q} = dynamic \ pressure \ on \ the \ spacecraft \ (N/m^{2})$

$\rho = atmospheric \ density \ (kg/m^{3})$

$V = spacecraft's \ velocity \ (m/s)$


Drag


\[F_{drag} = \bar{q} C_{D} A = \frac{1}{2} \rho V^{2} C_{D} A \]


Where:

$F_{drag} = drag \ force \ on \ spacecraft \ (N)$

$\bar{q} = dynamic \ pressure \ on \ the \ spacecraft \ (N/m^{2})$

$C_{D} = drag \ coefficient \ (unitless)$

$A = spacecraft's \ cross-sectional \ area \ (m^{2})$

$\rho = atmospheric \ density \ (kg/m^{3})$

$V = spacecraft's \ velocity \ (m/s)$


Acceleration


\[\bar{a} = \Big( - \bar{q} \frac{C_{D}A}{m} \cos \gamma \Big) \hat{X} + \Big( \bar{q} \frac{C_{D}A}{m} \sin \gamma \Big) \hat{Z} \]


Where:

$\bar{a} = spacecraft's \ acceleration \ (m/s^{2})$

$\bar{q} = dynamic \ pressure \ on \ the \ spacecraft \ (N/m^{2})$

$C_{D} = drag \ coefficient \ (unitless)$

$A = spacecraft's \ cross-sectional \ area \ (m^{2})$

$m = spacecraft's \ mass \ (kg)$

$\gamma = spacecraft's \ flight-path \ angle \ (deg)$


Ballistic Coefficient


\[BC = \frac{m}{C_{D}A}\]


Where:

$BC = spacecraft's \ ballistic \ coefficient \ (kg/m^{2})$

$m = spacecraft's \ mass \ (kg)$

$C_{D} = drag \ coefficient \ (unitless)$

$A = spacecraft's \ cross-sectional \ area \ (m^{2})$


Maximum Deceleration


\[a_{max} = \frac{V_{re-entry}^{2} \beta \sin \gamma}{2e}\]


Where:

$a_{max} = spacecraft's \ maximum \ deceleration \ (m/s^{2})$

$V_{re-entry} = spacecraft's \ re-entry \ velocity \ (m/s)$

$\beta = atmospheric \ scale \ height = 0.000139 \ (m^{-1}) \ for \ Earth$

$\gamma = flight \ path \ angle \ (deg)$

$e = base \ of \ the \ natural \ logarithm = 2.7182...$


Altitude of Maximum Acceleration


\[h_{max} = \frac{1}{\beta} \ln \Big( \frac{\rho_{0}}{BC \beta \sin \gamma} \Big) \]


Where:

$h_{max} = altitude \ of \ spacecraft's \ maximum \ acceleration \ (m)$

$\beta = atmospheric \ scale \ height = 0.000139 \ (m^{-1}) \ for \ Earth$

$\rho_{0} = atmospheric \ density \ at \ sea \ level = 1.225 \ (kg/m^{3})$

$BC = spacecraft's \ ballistic \ coefficient \ (kg/m^{2})$

$\gamma = flight \ path \ angle \ (deg)$


Heating Rate


\[\dot{q} \cong 1.83 \times 10^{-4} V^{3} \sqrt{ \frac{ \rho}{r_{nose}}}\]


Where:

$\dot{q} = spacecraft's \ heating \ rate \ (W/m^{2})$

$V = spacecraft's \ velocity \ (m/s)$

$\rho = air \ density \ (km/m^{3})$

$r_{nose} = spacecraft's \ nose \ radius \ (m)$


Altitude of Maximum Heating Rate


\[h_{\dot{q}max} = \frac{1}{\beta} \ln \Big( \frac{\rho_{0}}{3BC \beta \sin \gamma} \Big) \]


Where:

$h_{\dot{q}max} = altitude \ of \ spacecraft's \ maximum \ heating \ rate \ (m)$

$\beta = atmospheric \ scale \ height = 0.000139 \ (m^{-1}) \ for \ Earth$

$\rho_{0} = atmospheric \ density \ at \ sea \ level = 1.225 \ (kg/m^{3})$

$BC = spacecraft's \ ballistic \ coefficient \ (kg/m^{2})$

$\gamma = flight \ path \ angle \ (deg)$


Velocity at Maximum Heating Rate


\[V_{\dot{q} max} \approx 0.846 V_{re-entry}\]


Where:

$V_{\dot{q} max} = spacecraft's \ velocity \ when \ it \ reaches \ maximum \ heating \ rate \ (m/s)$

$V_{re-entry} = spacecraft's \ velocity \ at \ re-entry \ (m/s)$


Emitted Power


\[q_{A} = \sigma \varepsilon T^{4}\]


Where:

$q_{A} = object's \ emitted \ power \ per \ unit \ area \ (W/m^{2})$

$\sigma = Boltzmann \ constant = 5.67 \times 10^{-8} \ (W/m^{2}K^{4})$

$\varepsilon = object's \ emissivity \ (0 < \varepsilon < 1) \ (unitless)$

$T = object's \ temperature \ (K)$